Spreads in H(q) and 1-systems of Q(6, q )
نویسندگان
چکیده
In this paper we prove that the projections along reguli of a translation spread of the classical generalized hexagon H(q) are translation ovoids of Q(4, q). As translation ovoids of Q(4, 2r ) are elliptic quadrics, this forces that all translation spreads of H(2r ) are semi-classical. By representing H(q) as a coset geometry, we obtain a characterization of a translation spread in terms of a set of points of PG(3, q) which belong to imaginary chords of a twisted cubic and we construct a new example of a semi-classical spread of H(2r ). Finally, we study the semi-classical locally Hermitian 1-systems of Q(6, q) which are spreads of Q(5, q).
منابع مشابه
On maximal partial spreads of H(2n+1, q2)
A lower bound for the size of a maximal partial spread of H(2n+1, q) is given. For H(2n + 1, q) in general, and for H(5, q) in particular, new upper bounds for this size are also obtained. In [1], maximal partial spreads of H(3, q) and H(5, q) have been constructed from spreads of W3(q) and W5(q) respectively; the construction for H(5, q) will be generalized to H(4n+ 1, q), n ≥ 1, thus yielding...
متن کاملON ($epsilon, epsilon vee q$)-FUZZY IDEALS OF BCI-ALGEBRAS
The aim of this paper is to introduce the notions of ($epsilon, epsilon vee q$)-fuzzy p-ideals, ($epsilon, epsilon vee q$)-fuzzy q-ideals and ($epsilon, epsilon vee q$)-fuzzy a-ideals in BCIalgebras and to investigate some of their properties. Several characterizationtheorems for these generalized fuzzy ideals are proved and the relationshipamong these generalized fuzzy ideals of BCI-algebras i...
متن کاملON Q-BITOPOLOGICAL SPACES
We study here $T_{0}$-$Q$-bitopological spaces and sober $Q$-bitopological spaces and their relationship with two particular Sierpinski objects in the category of $Q$-bitopological spaces. The epireflective hulls of both these Sierpinski objects in the category of $Q$-bitopological spaces turn out to be the category of $T_0$-$Q$-bitopological spaces. We show that only one of these Sierpinski ob...
متن کاملFurther study on $L$-fuzzy Q-convergence structures
In this paper, we discuss the equivalent conditions of pretopological and topological $L$-fuzzy Q-convergence structures and define $T_{0},~T_{1},~T_{2}$-separation axioms in $L$-fuzzy Q-convergence space. {Furthermore, $L$-ordered Q-convergence structure is introduced and its relation with $L$-fuzzy Q-convergence structure is studied in a categorical sense}.
متن کاملMaximal Partial Spreads of Polar Spaces
Some constructions of maximal partial spreads of finite classical polar spaces are provided. In particular we show that, for n > 1, H(4n−1, q2) has a maximal partial spread of size q2n + 1, H(4n + 1, q2) has a maximal partial spread of size q2n+1 + 1 and, for n > 2, Q+(4n − 1, q), Q(4n − 2, q), W(4n − 1, q), q even, W(4n − 3, q), q even, have a maximal partial spread of size qn + 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 23 شماره
صفحات -
تاریخ انتشار 2002